QCAR # Sensor-rich autonomous vehicle for self-driving applications QCar, the feature vehicle of the Self-Driving Car Research Studio, is an open-architecture, scaled vehicle designed for academic research. It is equipped with a wide range of sensors including LIDAR, 360-degree vision, depth sensor, IMU, encoders, as well as user-expandable IO. The vehicle is powered with an NVIDIA® Jetson™ TX2 supercomputer that gives you exceptional speed and power efficiency. Working individually or in a fleet, QCar is the ideal vehicle for validating your research concepts such as dataset generation, mapping, navigation, machine learning, artificial intelligence, and many more. #### **Features** #### **High Performance** NVIDIA® Jetson™ TX2 supercomputer ### **Open Software Architecture** Design and deploy applications using Simulink®, Python™, C/C++, ROS #### Dependable Robust mechanical design #### **Extensive & Expandable** Wide range of sensors with user-expandable IO for custom applications #### Research Studio The Self-Driving Car Research Studio comes with everything you need to jumpstart your research. QCar (single vehicle or vehicle fleet) ### Ground Control Station - High-performance computer with RTX graphics card with Tensor AI cores - Three monitors - High-performance router - Wireless gamepad - QUARC Autonomous license # Studio Space - Driving map featuring intersections, parking spaces, single & double lane roads and roundabouts - Supporting infrastructure including traffic lights, signs and cones ### **Product Details** # **Device Specifications** | Dimensions | 39 x 19 x 20 cm | | |------------------------------|--|---| | Weight (with batteries) | 2.7 kg | | | Power | 3S 11.1 V LiPo (3300 mAh) with XT60 connector | | | Operation time (approximate) | ~2 hours 11 m (stationary, with sensor feedback | k) 30 min (driving, with sensor feedback) | | Onboard computer | NVIDIA® Jetson™ TX2
GPU: 2 GHz quad-core ARM Cortex-A57 64-bit
+ 2 GHz Dual-Core NVIDIA Denver2 64-bit | GPU: 256 CUDA Core NVIDIA Pascal™ GPU architecture,
1.3 TFLOPS (FP16)
Memory: 8GB 128-bit LPDDR4 @ 1866 MHz, 59.7 GB/s | | Lidar | LIDAR with 2k-8k resolution, 10-15Hz scan rat | e, 12m range | | Cameras | Intel D435 RGBD Camera | 360° 2D CSI Cameras using 4x 160° FOV wide angle lenses, 21fps to 120fps | | Encoders | 720 count motor encoder pre-gearing with hardware digital tachometer | | | IMU | 9 axis IMU sensor (gyro, accelerometer, magnetomter) | | | Safety features | Hardware "safe" shutdown button | Auto-power off to protect batteries | | Expandable IO | 2x SPI
4x I2C
40x GPIO (digital)
4x USB 3.0 ports
1x USB 2.0 OTG port | 3x Serial 4x Additional encoders with hardware digital tachometer 4x Unipolar analog input, 12 bit, 3.3V 2x CAN Bus 8x PWM (shared with GPIO) | | Connectivity | WiFi 802.11a/b/g/n/ac 867Mbps with dual antennas | 2x HDMI ports for dual monitor support
1x 10/100/1000 BASE-T Ethernet | | Additional QCar features | Headlights, brake lights, turn signals, and reverse lights (with intensity control) Dual microphones Speaker | LCD diagnostic monitoring, battery voltage, and custom text support | | Supported Software and APIs | QUARC for Simulink® Quanser APIs TensorFlow TensorRT Python™ 2.7 & 3 ROS 1 & 2 CUDA® cuDNN OpenCV Deep Stream SD VisionWorks® VPI™ GStreamer Jetson
Multimedia APIs | Simulink Coder Simulation and virtual training environments (Gazebo and Quanser Communication Unreal Engine |